Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica ; (12): 1003-1013, 2023.
Article in Chinese | WPRIM | ID: wpr-978762

ABSTRACT

The whole herb of Solanum nigrum L. can be used as the herbal drug. In this study, UHPLC-Q Exactive high resolution mass combined with GNPS molecular network was used for the rapid characterization of the components in the leaves of S. nigrum L. A total of 157 compounds were identified, including 30 steroid alkaloids, 61 steroid saponins, 35 flavonoids, and 31 other compounds (amino acids and organic acids), by comparison with the data reported in the literature, and mass fragmentation characteristics analysis, as well as the correlation of known and unknown nodes in the GNPS molecular network. Compared with the fruits and stems, the leaves of S. nigrum L was rich in a variety of steroidal saponins, steroidal alkaloids, and flavonoids, and the results lay the foundation for the precise resources utilization of S. nigrum L.

2.
Chinese Herbal Medicines ; (4): 430-438, 2023.
Article in English | WPRIM | ID: wpr-982520

ABSTRACT

OBJECTIVE@#The present study aimed to evaluate the therapeutic effect and explore the underlying mechanisms of Longxue Tongluo Capsule (LTC) on ischemic stroke rats.@*METHODS@#Twenty-six rats were randomly divided into four groups, including sham group, sham + LTC group, MCAO group, and MCAO + LTC group. Ischemic stroke rats were simulated by middle cerebral artery occlusion (MCAO), and LTC treatment group were orally administrated with 300 mg/kg of LTC once daily for seven consecutive days. LTC therapy was validated in terms of neurobehavioral abnormality evaluation, cerebral infarct area, and histological assessments. The plasma metabolome comparisons amongst different groups were conducted by UHPLC-Q Exactive MS in combination with subsequent multivariate statistical analysis, aiming to finding the molecules in respond to the surgery or LTC treatment.@*RESULTS@#Intragastric administration of LTC significantly decreased not only the neurobehavioral abnormality scores but also the cerebral infarct area of MCAO rats. The interstitial edema, atrophy, and pyknosis of glial and neuronal cells occurred in the infarcted area, core area, and marginal area of cerebral cortex were improved after LTC treatment. A total of 13 potential biomarkers were observed, and Youden index of 11 biomarkers such as LysoPC, SM, and PE were more than 0.7, which were involved in neuroprotective process. The correlation and pathway analysis showed that LTC was beneficial to ischemic stroke rats via regulating glycerophospholipid and sphingolipid metabolism, together with nicotinate and nicotinamide metabolism. Heatmap and ternary analysis indicated the synergistic effect of carbohydrates and lipids may be induced by flavonoid intake from LTC.@*CONCLUSION@#The present study could provide evidence that metabolomics, as systematic approach, revealed its capacity to evaluate the holistic efficacy of TCM, and investigate the molecular mechanism underlying the clinical treatment of LTC on ischemic stroke.

3.
China Journal of Chinese Materia Medica ; (24): 3952-3960, 2020.
Article in Chinese | WPRIM | ID: wpr-828362

ABSTRACT

A method of ultra-high performance liquid chromatography coupled with quadrupole/electrostatic field Obitrap high-resolution mass spectrometry(UHPLC-Q-Exactive MS) was established to comprehensively identify the metabolites of carnosic acid in rats. After oral gavage of carnosic acid CMC-Na suspension in rats, urine, plasma and feces samples were collected and pretreated by solid phase extraction(SPE). Acquity UPLC BEH C_(18 )column(2.1 mm×100 mm, 1.7 μm) was used with 0.1% formic acid solution(A)-acetonitrile(B) as the mobile phase for the gradient elution. Biological samples were analyzed by quadrupole/electrostatic field Obitrap high-resolution mass spectrometry in positive and negative ion mode. Based on the accurate molecular mass, fragment ion information, and related literature reports, a total of 28 compounds(including carnosic acid) were finally identified in rat samples. As a result, the main metabolic pathways of carnosic acid in rats are oxidation, hydroxylation, methylation, glucuronide conjugation, sulfate conjugation, S-cysteine conjugation, glutathione conjugation, demethylation, decarbonylation and their composite reactions. The study showed that the metabolism of carnosic acid in rats could be efficiently and comprehensively clarified by using UHPLC-Q-Exactive MS, providing a reference for clarifying the material basis and metabolic mechanism of carnosic acid.


Subject(s)
Animals , Rats , Abietanes , Chromatography, High Pressure Liquid , Mass Spectrometry , Solid Phase Extraction
SELECTION OF CITATIONS
SEARCH DETAIL